关注“药时代”微信公众号,获取更多精彩内容 ↓ ↓ ↓


导览
01
新的生物学
02
新的药物技术
生物医药领域近年来涌现了一大批新的药物技术(表1)。药物技术沿着生命“中心法则”历经百年,由外及里全面覆盖了蛋白质,核酸和基因三个环节,包括最早靶向蛋白质的传统药物,重新崛起的核酸药物以及最新的精确操控RNA和DNA分子的基因疗法和基因编辑等。药物形式除了经典的小分子,多肽、蛋白、多糖和核酸,还出现了细胞、病毒和肠道菌等更加复杂的活体药物。

1.药物技术的一个发展趋势是模拟生物自身的调控方式
类似的原理也适用RNA单碱基编辑。人们发现乌贼和章鱼能够利用一种称为ADAR的酶和指导RNA的定位对特定RNA序列进行单碱基编辑。与DNA编辑造成的永久变化不同,RNA编辑作用是暂时的,避免了长期风险。2017年,张锋团队将ADAR的催化部分与Cas13蛋白融合开发了更加高效的RNA单碱基编辑器。这些技术都获得了大额的风险投资,成为当下热门的赛道之一(Korro Bio,Beam、Shape、ProQR、Locana等)。
2.药物技术发展的另一个趋势是程序化制药(Programmable Medicine)
3.药物技术发展还有一个趋势是药物形式的互换、组合和升级
最近,基因编辑改造的、猪的心脏和肾脏移植人体在美国获得初步成功,获得媒体的高度关注。基因编辑可以解决猪内源性病毒和免疫排斥的难题,华人科学家杨璐菡是这方面的开拓者之一,其创立的公司包括eGenesis和杭州启函生物。某种意义上,基因编辑的动物器官和干细胞3D打印的替换器官也算是一种高级药物。这些技术属于器官移植范畴且处于早期探索阶段,这里就不再展开讨论。
03
药物发现赋能技术
1.人工智能(AI)
2.药物递送技术
3.核酸的化学修饰技术
表2:三家公司的新冠疫苗比较(27)
1. 100个新靶点-医药魔方Pro
2. Yi Sun,et al. Blockade of the CD93 pathway normalizes tumor vasculature to facilitate drug delivery and immunotherapy. Sci Transl Med 2021 Jul 28;13(604)
3. Xiujie Sun, et al. Tumour DDR1 promotes collagen fibre alignment to instigate immune exclusionNature 2021 Nov;599(7886):673-678
4. Christina M Scribano ,et al. Chromosomal instability sensitizes patient breast tumors to multipolar divisions induced by paclitaxel. Sci Transl Med 2021 Sep 8;13(610)
5. Baolin Liu, et al. Temporal single-cell tracing reveals clonal revival and expansion of precursor exhausted T cells during anti-PD-1 therapy in lung cancer. Nat Cancer 2022 Jan;3(1):108-121
6. L K Metthew Lam, et al. DNA binding to TLR9 expressed by red blood cells promotes innate immune activation and anemia. Sci Transl Med 2021 Oct 20;13(616)
7. Isaac A Klein,et al. Partitioning of cancer therapeutics in nuclear condensates Science 2020 Jun 19;368(6497):1386-1392
8. acob R Mann, et al. RNA Binding Antagonizes Neurotoxic Phase Transitions of TDP-43.Neuron 102, 1–18, April 17, 2019
9. Jennifer Risso-Ballester, et al. A condensate-hardening drug blocks RSV replication in vivo. Nature 2021 Jul;595(7868):596-599
10. Michael Eisenstein. Seven technologies to watch in 2022. Nature 2022 Jan;601(7894):658-661
11. Karin Schmelz, et al. Spatial and temporal intratumour heterogeneity has potential consequences for single biopsy-based neuroblastoma treatment decisions. Nat Commun 2021 Nov 23;12(1):6804
12. Longchao Liu,et al. Rejuvenation of tumour-specific T cells through bispecific antibodies targeting PD-L1 on dendritic cells. Nat Biomed Eng 2021 Nov;5(11):1261-1273
13. Lei S Qi ,et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013 Feb 28;152(5):1173-83
14. Alexis C Komor ,et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016 May 19;533(7603):420-4
15. Zachary B Hill, et al. Human antibody-based chemically induced dimerizers for cell therapeutic applications. Nat Chem Biol 2018 Feb;14(2):112-117
16. Thomas J Gardner ,et al. Nat Chem Biol 2022 Feb;18(2):216-225 Engineering CAR-T cells to activate small-molecule drugs in situ
17. Joel G Rurik ,et al. Science 2022 Jan 7;375(6576):91-96 CAR T cells produced in vivo to treat cardiac injury
18. Yuancheng Lu ,et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature 2020 Dec;588(7836):124-129
19. Douglas Hanahan .Hallmarks of Cancer: New Dimensions. Cancer Discov 2022 Jan;12(1):31-46
20. Andrew Giessel ,et al. Therapeutic enzyme engineering using a generative neural network. Sci Rep 2022 Jan 27;12(1):1536
21. Michael Segel, et al. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 2021 Aug 20;373(6557):882-889
22. Samagya Banskota , et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell 2022 Jan 20;185(2):250-265.e16
23. Drew H Bryant, et al. Deep diversification of an AAV capsid protein by machine learning. Nat Biotechnol 2021 Jun;39(6):691-696
24. Qiang Cheng, et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat Nanotechnol 2020 Apr;15(4):313-320.
25. Shuai Liu,et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR-Cas gene editing. Nat Mater 2021 May;20(5):701-710
26. Katalin Karikó 1, Michael Buckstein, Houping Ni, Drew Weissman. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 2005 Aug;23(2):165-75
27. Rein Verbeke , Ine Lentacker , Stefaan C De Smedt , Heleen Dewitte . The dawn of mRNA vaccines: The COVID-19 case. J Control Release 2021 May 10;333:511-520
关注“药时代”微信公众号,获取更多精彩内容 ↓ ↓ ↓
End


推荐阅读

本篇文章来源于微信公众号:药时代
发布者:药时代,转载请首先联系contact@drugtimes.cn获得授权